Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

MVP/GMVP version 3; General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods (Translated document)

Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa

JAEA-Data/Code 2016-019, 450 Pages, 2017/03

JAEA-Data-Code-2016-019.pdf:4.43MB
JAEA-Data-Code-2016-019-hyperlink.zip:2.36MB

In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants, etc. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions.

Journal Articles

Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

Okumura, Keisuke; Nakakawa, Masayuki; Kaneko, Kunio*; *

JAERI-Conf 2000-018, p.31 - 41, 2001/01

Burnup calculation codes based on the conventional deterministic approach often encounter difficult problems because of the constraints on the geometry description, limit of approximation on the effective resonance cross-sections, failing of the diffusion approximation due to extremely strong anisotropic or heterogenity. They are, for example, the prediction of burn characteristics of plutonium spot, core design of ultra-small reactors, analysis of the sample material in an irradiation capsule of the research rector. To deal with these problems any time, a burn-up calculation code (MVP-BURN) was developed by using a continuous energy Monte Carlo code MVP. MVP-BURN was validated by comparison with the results of deterministic codes in the international benchmark problems, and by comparison with the measured values of the spent fuel composition irradiated in a commercial reactor.

2 (Records 1-2 displayed on this page)
  • 1